Multi-Omics Approach Identifies Molecular Mechanisms of Plant-Fungus Mycorrhizal Interaction
نویسندگان
چکیده
In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root-mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensor systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with 15 transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and jasmonic acid. This multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.
منابع مشابه
Vesicular-arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum) seedlings
Effects of the mycorrhizal fungus Glomus intraradices on establishment of subterranean clover (Trifolium subterraneum L.) seedlings in saline conditions were studied in a glasshouse experiment. Growth and nutrient uptake were determined 10, 20 and 30 days after transplanting of mycorrhizal and nonmycorrhizal matched seedlings into soils with five different levels of salinity. Mycorrhizal plants...
متن کاملPlant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Saleh Shahabivand1*, Akbar Padash2, Ahmad Aghaee1, Yousef Nasiri3 and Parisa Fathi Rezaei1
Plant biostimulants such as arbuscular mycorrhizal (AM) fungi and humic substances (HS) can be used as an appropriate alternative to chemical fertilizers, as regards to environmental problems of chemicals. The effects of Funneliformis mosseae as an AM fungus, HS (foliar spray and topdressing application), and chemical fertilizer (NK), separately or interacting, on biochemical responses in Menth...
متن کاملThe receptor kinase CERK1 has dual functions in symbiosis and immunity signalling.
The establishment of symbiotic interactions between mycorrhizal fungi, rhizobial bacteria and their legume hosts involves a common symbiosis signalling pathway. This signalling pathway is activated by Nod factors produced by rhizobia and these are recognised by the Nod factor receptors NFR1/LYK3 and NFR5/NFP. Mycorrhizal fungi produce lipochitooligosaccharides (LCOs) similar to Nod factors, as ...
متن کاملEffect of arbuscular mycorrhizal fungus, plant growth promoting rhizobacterium, and soil drying on different forms of potassium and clay mineral changes in a calcareous soil under maize planting
ABSTRACT- Greenhouse experiment was conducted in factorial experiment arranged as a completely randomized design (CRD) to evaluate the effect of Glomus intraradices, Pseudomonas fluorescence and soil drying on different forms of potassium (K) and the changes of clay minerals in a calcareous soil after maize planting. Treatments consisted of arbuscular mycorrhizal (AM) fungus at two levels: G0 (...
متن کاملEffects of mycorrhizal fungi on some physiological characteristics of salt stressed Ocimum basilicum L. Shekoofeh Enteshari* and Sepideh Hajbagheri
The present study investigates the effects of Glomus mosseae and Glomus intraradices on the resistance of green basil plants to salinity stress. The findings suggested that there was an interaction of effects between mycorrhiza fungi inoculation and salt stress on the physiological characteristics of Ocimum basilicum L. On one hand, salinity decreased percentage of root colonization, root lengt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015